MATH2048 Honored Linear Algebra II

Midterm Examination 1

Please show all your steps, unless otherwise stated. Answer all five questions.

1. (15pts) Let $\beta = \{1, x, x^2, \dots, x^n\}$ be the standard ordered basis for $P_n(\mathbb{R}), \beta' = \{1, 1+x, \dots, 1+x^n\}$ be another ordered basis for $P_n(\mathbb{R})$; and let $\gamma = \{e_1, e_2, \dots, e_{n+1}\}$ be the standard ordered basis for $F^{n+1}, \gamma' = \{e_1, e_1 + e_2, e_2 + e_3, \dots, e_n + e_{n+1}\}$ be another ordered basis for F^{n+1} . Consider the following linear transformation

$$T: P_n(\mathbb{R}) \to F^{n+1}$$
$$p(x) \mapsto [(x \cdot p(x))']_\beta$$

- (a) Find $[T]^{\gamma}_{\beta}$.
- (b) Find A, the change of coordinate matrix from β' to β; and find B, the change of coordinate matrix from γ' to γ.
- (c) Show that $[T]_{\beta'}^{\gamma'} = B^{-1}[T]_{\beta}^{\gamma}A.$
- 2. (15pts) Let $p_0(x) = x$, consider the following mapping

$$T: P_2(\mathbb{R}) \to \mathbb{R}^4$$

 $p(x) \mapsto ((p_0 \cdot p)(-1), (p_0 \cdot p)(1), (p_0 \cdot p)'(0), (p_0 \cdot p)'(1))$

for any $p \in P(\mathbb{R})$ and p' refers to the first derivative of p.

- (a) Show that T is a linear transformation.
- (b) Find $[T]^{\gamma}_{\beta}$, where β and γ are the standard ordered bases of $P_2(\mathbb{R})$ and \mathbb{R}^4 respectively.
- (c) Use dimension theorem to determine whether T is one-to-one. Please explain your answer with details.
- 3. (20pts) Consider the following mapping

$$T: P_n(\mathbb{R}) \to \mathbb{R}^{n+1}$$
$$p(x) \mapsto \left(\int_0^1 p(t)dt, \int_1^2 p(t)dt, \cdots, \int_n^{n+1} p(t)dt\right)$$

- (a) Show that T is a linear transformation.
- (b) Show that T is an isomorphism. (Hint: Any non-zero polynomial of degree n has at most n distinct zeros)

PLEASE TURN TO THE NEXT PAGE

4. (25pts) Let V be a finite-dimensional vector space over the field F and $U \subset V$ be a subspace of V. Define U_0 as follows:

$$U_0 = \{g \in V^* : g(\mathbf{u}) = 0 \text{ for all } \mathbf{u} \in U\}.$$

- (a) Let $\beta = {\mathbf{u}_1, ..., \mathbf{u}_m}$ be a basis of U. Extend it to a basis $\gamma = {\mathbf{u}_1, ..., \mathbf{u}_m, \mathbf{u}_{m+1}, ..., \mathbf{u}_n}$ of V. Suppose $\alpha = {\varphi_1, ..., \varphi_n}$ is the dual basis of γ . Prove that ${\varphi_{m+1}, ..., \varphi_n}$ is a basis of U_0 . Deduce that $\dim(U_0) = \dim(V) \dim(U)$.
- (b) (A little bit challenging) Consider the inclusion map $I: U \to V$ defined by $I(\mathbf{u}) = \mathbf{u}$ for all $\mathbf{u} \in U$.
 - i. Let $I^*: V^* \to U^*$ be the dual map of I. Show that $N(I^*) = U_0$ and $R(I^*) = U^*$
 - ii. Using the dimension theorem, prove that $\dim(U_0) = \dim(V) \dim(U)$.
- 5. (25pts) Suppose V_1, V_2, V_3, V_4 and V_5 are vector spaces over the same field F. For each $i = 1, 2, 3, 4, T_i : V_i \to V_{i+1}$ is a linear transformation between V_i and V_{i+1} . The relationship can be described by the following diagram.

$$V_1 \xrightarrow{T_1} V_2 \xrightarrow{T_2} V_3 \xrightarrow{T_3} V_4 \xrightarrow{T_4} V_5$$

The above diagram is said to be *exact* if $N(T_{j+1}) = R(T_j)$ for j = 1, 2 and 3.

- (a) Suppose V_1, V_4 and V_5 are all zero spaces (that is, a vector space consisting only of the zero vector). Prove that the diagram is exact if and only if T_2 is an isomorphism between V_2 and V_3 .
- (b) (Challenging) Suppose V_1, V_2, V_3, V_4 and V_5 are all finite-dimensional. Prove that if

$$V_1 \xrightarrow{T_1} V_2 \xrightarrow{T_2} V_3 \xrightarrow{T_3} V_4 \xrightarrow{T_4} V_5$$

is exact, then

$$V_5^* \xrightarrow{T_4^*} V_4^* \xrightarrow{T_3^*} V_3^* \xrightarrow{T_2^*} V_2^* \xrightarrow{T_1^*} V_1^*$$

is also exact.

END OF PAPER